logo

uni_wuerzburg
Für die Entwicklung einer neuartigen Elektronik ist der so genannte Spin-Hall-Effekt technologisch sehr wichtig. Physiker von der Uni Würzburg haben ihn jetzt erstmals mit rein elektrischen Messungen nachgewiesen.

Warum der Spin-Hall-Effekt so spannend ist? Weil er in Halbleiter-Bauelementen Magnetisierungen erzeugt, ohne dass hierfür der aufwändige Einsatz externer Magnetfelder oder magnetischer Materialien nötig ist.

neues vom spin hall effekt
Experiment der Würzburger Physiker zum Nachweis
des Spin-Hall-Effektes: Auf der linken Seite
einer H-förmigen Halbleiterstruktur fließt
Strom. Die Ladungsträger unterschiedlicher
Magnetisierung werden getrennt und sammeln sich
an den Rändern. Dadurch kommt es im Querbalken
des H zu einem reinen Spin-Strom, der den
rechten Schenkel der Struktur erreicht. Dort
werden die Elektronen in eine Richtung
senkrecht zum Spin-Strom gelenkt und lassen
sich in Form einer Spannung messen.
Grafik: Joachim Schneider

Derartige Manipulationen sind eine Grundvoraussetzung für die so genannte Spin-basierte Elektronik. Von dieser bislang nicht realisierten Technologie erhoffen sich Wissenschaftler unter anderem deutlich leistungsstärkere Computer oder Fortschritte bei der Verschlüsselung von Daten.

Publikation in „Nature Physics“

Ihren aktuellen Forschungserfolg beschreiben die Würzburger Physiker in der Top-Zeitschrift „Nature Physics“. Beteiligt an der Publikation sind die Teams der Würzburger Physik-Professoren Hartmut Buhmann, Werner Hanke, Ewelina Hankiewicz und Laurens W. Molenkamp.

Was macht den Spin-Hall-Effekt aus? In einem halbleitenden Bauelement lassen sich die Ladungsträger mit unterschiedlicher Magnetisierung zu den gegenüberliegenden Rändern des Elements lenken, ohne dass hierfür ein äußeres Magnetfeld nötig ist. Die unterschiedliche Magnetisierung rührt hier von einer unterschiedlichen Spin-Ausrichtung elektrischer Ladungsträger her. Sie wird bewirkt von der so genannten Spin-Bahn-Kopplung. Sie ist darauf zurückzuführen, dass ein in einem elektrischen Feld bewegtes Teilchen (Ladungsträger) immer auch ein magnetisches Feld spürt. Als Folge davon baut sich ein magnetisches Feld auf.

Dieser Effekt konnte in Halbleitern bisher nur mit optischen Methoden nachgewiesen werden. Dem Würzburger Forschungsteam aus experimentell und theoretisch arbeitenden Physikern jedoch ist es nun erstmals gelungen, den Effekt mit rein elektrischen Messungen zu zeigen. Das ermöglicht eine Nutzung in integrierten elektronischen Bauelementen.

Umkehrung physikalischer Effekte

Beim Nachweis des Spin-Hall-Effektes machten die Forscher vom Prinzip der Umkehrung physikalischer Effekte Gebrauch: Fließt auf der linken Seite einer H-förmigen Halbleiterstruktur ein elektrischer Strom, dann werden die Ladungsträger mit unterschiedlicher Magnetisierung (Spin) voneinander getrennt und sammeln sich am linken bzw. am rechten Rand der Struktur.

Wegen des Ungleichgewichts in der Spin-Verteilung kommt es am Rand des Querbalkens der H-Struktur zu einem reinen Spin-Strom. Dieser erreicht den rechten Schenkel der H-Struktur und bewirkt nun – als Umkehrung des Spin-Hall-Effekts – eine Trennung der Ladungsträger: Die Elektronen werden in eine Richtung senkrecht zum Spin-Strom gelenkt und können in Form einer Spannung gemessen werden.

H-förmige Halbleiter verwendet

Zu dieser Erkenntnis kamen die Physiker mit H-Strukturen, die circa 200 Nanometer breit und nur wenige Mikrometer lang sind. Als Halbleitermaterial verwendeten sie eine Schichtung aus Quecksilber-Tellurid und Quecksilber-Cadmium-Tellurid. In diesem Materialsystem ist der Spin-Hall-Effekt besonders stark ausgeprägt.

Im gleichen Materialsystem haben die Würzburger Physiker im Jahr 2007 bereits den Quanten-Spin-Hall-Effekt nachgewiesen. Dieser tritt nur dann auf, wenn im Material keine freien Ladungsträger vorhanden sind. Der Spin-Hall-Effekt wird dagegen bei elektrisch leitendem Material sichtbar.


„Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures”, C. Brüne, A. Roth, E. G. Novik, M. König, H. Buhmann, E. M. Hankiewicz, W. Hanke, J. Sinova & L. W. Molenkamp, Nature Physics, online publiziert am 2. Mai 2010, doi: 10.1038/nphys1655


Robert Emmerich, Stabsstelle Öffentlichkeitsarbeit
Julius-Maximilians-Universität Würzburg

 

© 2024 Funkzentrum In Media e. V.
Cookies erleichtern die Bereitstellung unserer Dienste. Mit der Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies verwenden.