logo


Wenn es Forschern endlich gelingt, abstrakte Theorie auch mit praktischen Experimenten zu untermauern, ist dies Anlass zur Freude: so geschehen diese Woche, als ein Team aus italienischen und amerikanischen Wissenschaftlern mit Hilfe eines fluidwissenschaftlichen Weltraumexperiments an Bord der Fotonkapsel M3 eine vor zehn Jahren erstellte Theorie erstmals bestätigen konnte.

Obwohl sich die Kapsel erst seit einer Woche in der Umlaufbahn befindet, sorgen die Daten des Experiments GRADFLEX (GRAdient-Driven FLuctuation EXperiment) unter Wissenschaftlern bereits jetzt für Aufregung, denn die ersten Messungen stimmen mit den in den letzten zehn Jahren erarbeiteten detaillierten theoretischen Voraussagen qualitativ überein.

Flüssigkeiten unterliegen grundsätzlich winzigen Temperatur- oder Konzentrationsschwankungen, die auf die unterschiedliche Geschwindigkeit der einzelnen Moleküle zurückzuführen sind. Diese Schwankungen sind jedoch in der Regel so gering, dass man sie kaum beobachten kann.

In den 90er Jahren entdeckten Wissenschaftler, dass diese winzigen Schwankungen in Flüssigkeiten und Gasen steigen und sogar mit bloßem Auge wahrgenommen werden können, sobald ein starkes Temperaturgefälle hergestellt wird. Erreicht wird dies entweder, indem eine dünne Flüssigkeitsschicht von unten erwärmt wird, und zwar gerade so, dass keine Konvektion entsteht, oder durch Erwärmung der Flüssigkeit von oben, wobei Konvektion ebenfalls verhindert wird, so dass genauere Messergebnisse erzielt werden können.

Erste Forschungsergebnisse konnten zwar bereits bei Experimenten am Boden gewonnen werden, ein wesentlich deutlicheres Bild dieser Schwankungen wurde jedoch in schwereloser Umgebung erwartet. Mit der Foton-Mission bot sich nun die Gelegenheit, die Vorhersagen zu überprüfen, und die vorausgesagten wie die tatsächlichen Ergebnisse erwiesen sich als deckungsgleich.

„Die ersten Aufnahmen des Experiments wurden zum Nutzlastbetriebszentrum im schwedischen Kiruna gesendet und konnten bereits nach wenigen Erdumrundungen am Boden empfangen werden“, erläuterte Professor Marzio Giglio, der einem Team aus Wissenschaftlern des Physikalischen Instituts der Universität Mailand und des CNR-INFM (Istituto Nazionale per la Fisica della Materia) vorsteht.

Die Aufnahmen erbrachten nun zur Freude der Wissenschaftler die visuelle Bestätigung ihrer theoretischen Vorhersagen, denn sie zeigten einen deutlichen Anstieg der Schwankungen. Die Datenanalyse ergab ferner einen erheblichen Anstieg des Ausmaßes der Schwankungen in Bezug auf Temperatur und Konzentration.

„Es kommt nur selten vor, dass eine theoretische Vorhersage anhand einer Weltraummission in einer derartigen Rekordzeit bestätigt werden kann“, erklärte Olivier Minster, Leiter der ESA-Abteilung für physikalische Grundlagenforschung. „Diese Ergebnisse sind für uns deshalb so wichtig, da sie die von uns bereits vor zehn Jahren vorhergesagten Auswirkungen erstmals beweisen.“

„Die Aufnahmen aus der Foton-Kapsel ermöglichen eine Neuausrichtung unserer Forschungen, so dass wir die wissenschaftliche Ausbeute dieser Mission weiter optimieren können“, so Professor David Cannell von der Universität von Kalifornien in Santa Barbara (UCSB). „Nach Bergung der Experimente werden wir in unseren Labors noch viele Tausend Aufnahmen zu analysieren haben, womit wir sicherlich noch eine Weile beschäftigt sein werden.“

„Unsere Ergebnisse könnten auch andere Bereiche der Schwerelosigkeitsforschung beeinflussen, wie etwa das Wachstum von Kristallen, und vielleicht sogar neue Technologien außerhalb der Raumfahrt  ermöglichen“, vermutet Professor Giglio.

GRADFLEX ist eines von 43 wissenschaftlichen und technologischen ESA-Experimenten an Bord der zwölftägigen Foton-M3-Mission, die mit dem Wiedereintritt der Kapsel in die Erdatmosphäre und der anschließenden Landung in Kasachstan am 26. September zu Ende gehen wird. Die Bordexperimente werden daraufhin wieder den einzelnen Forschungsinstituten ausgehändigt, wo sie in den kommenden Monaten sorgfältig ausgewertet werden.

Pressemitteilung Nr. 29-2007Paris, 24. September 2007
© 2024 Funkzentrum In Media e. V.
Cookies erleichtern die Bereitstellung unserer Dienste. Mit der Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies verwenden.